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’ INTRODUCTION

Background. Concentrations of micropollutants1 such as
pesticides and biocides in freshwater streams may strongly
fluctuate over time, as demonstrated by an increasing number of
chemical monitoring studies with high temporal resolution2�8 or
predicted by pollutant fate models.9 Assessing the risk of adverse
effects of such fluctuating concentrations to aquatic organisms is
challenging,2,7,10�13 because traditional risk assessment methods
are based on ecotoxicological tests, employing constant exposure
concentrations and fixed durations, that do not explicitly con-
sider the temporal aspect of toxicity. As a result, the current risk
assessment procedures lack methods to assess the potential
toxicity of fluctuating and repeated pulsed exposures.
Traditionally derived water quality criteria for short-term

or long-term exposure do not suffice because it is unclear
how to evaluate very short peaks above the short-term quality
criterion or concentrations between the short-term and the
long-term criterion.2,7,14 In addition, it is unclear how to deal
with subsequent pollutant peaks, which raises the question
whether exposed organisms have had enough time to recover
in between exposures,7,14,15 and whether low concentrations
between peaks contribute to the risk of adverse effects.7,14

Risk assessment of fluctuating concentrations requires assess-
ment of toxicity over time (prediction of toxic effects beyond
test conditions), and such a prediction requires a mechanistic
model of toxicity.10,16 Toxicokinetic-toxicodynamic (TKTD)
models 14,17 are suitable for this purpose as they can simulate
time-dependent phenomena related to prediction of toxic effects
such as carry-over toxicity and cumulative effects,15,16,18�23 dela-
yed and post exposure effects 19,24�27 and organism recovery.18,28�31

Objectives. The objective of this study was to overcome the
limitations of time-invariable toxicity data by implementing sim-
ulated time-variable toxicity into risk assessment of micropollu-
tants. We demonstrate that prediction of toxic effects over time is
feasible with a mechanistic model being used for two purposes:
(i) the simulation of effects over time and (ii) the calculation of
extrapolation factors for a set of ecotoxicological data. We used
the insecticide diazinon as an example and assessed the con-
tribution of urban and agricultural sources of diazinon toward the
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ABSTRACT: Temporally resolved environmental risk assessment of
fluctuating concentrations of micropollutants is presented. We separated
the prediction of toxicity over time from the extrapolation from one to
many species and from acute to sublethal effects. A toxicokinetic�
toxicodynamic (TKTD) model predicted toxicity caused by fluctuating
concentrations of diazinon, measured by time-resolved sampling over 108
days from three locations in a stream network, representing urban,
agricultural and mixed land use. We calculated extrapolation factors to
quantify variation in toxicity among species and effect types based on
available toxicity data, while correcting for different test durations with the
TKTDmodel. Sampling from the distribution of extrapolation factors and
prediction of time-resolved toxicity with the TKTD model facilitated
subsequent calculation of the risk of undesired toxic events. Approxi-
mately one-fifth of aquatic organisms were at risk and fluctuating concentrations were more toxic than their averages. Contribution
of urban and agricultural sources of diazinon to the overall risk varied. Thus using fixed concentrations as water quality criteria
appears overly simplistic because it ignores the temporal dimension of toxicity. However, the improved prediction of toxicity for
fluctuating concentrations may be small compared to uncertainty due to limited diversity of toxicity data to base the extrapolation
factors on.
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ecotoxicological risk based on time-resolved exposure data, mea-
sured at different locations within a catchment.
Outline of the Time-Resolved Risk Assessment Approach.

The goal of the time-resolved risk assessment is to predict the risk
posed to aquatic organisms as a function of cumulative exposure
over time. We illustrate the approach using measured time series
of diazinon exposure concentrations from three locations in a
small stream network, which represent urban, agricultural and
mixed land use, as inputs for the environmental risk assessment.
Risk assessment of micropollutants encompasses three dimen-

sions: (i) prediction of toxicity under long-term and fluctuating
exposure, (ii) extrapolation from lethal to sublethal end points
and (iii) extrapolation from one (or a few) tested species to many
(all) species in the water body of concern. Here, we separated the
three dimensions and addressed the prediction of toxicity over
time separately from the extrapolation to many species and sub-
lethal effects. Prediction of toxic effects over time was achieved
with simulations by a mechanistic TKTD model.
Fixed assessment factors are traditionally used to address

the above-mentioned extrapolation steps in risk assessment of
chemicals.32�36 Here, we replace these assessment factors with
extrapolation factors that quantify the variation in the extrapola-
tion of toxicity from one to many species and from lethal to

sublethal effects based on available, relevant toxicity data. In the
calculation of these extrapolation factors, we corrected effect con-
centrations for differences in test durations by using the mechan-
istic TKTD model. Finally, we fitted a distribution to the extra-
polation factors, sampled a large number of extrapolation factors
from that distribution and predicted the time course of toxic
effects with the TKTD model for each of these extrapolation
factors. We then calculated the risk of undesired toxic events
from the multitude of these simulations (Figure 1).

’MATERIALS AND METHODS

Diazinon Monitoring Data. Diazinon is a hydrophobic
insecticide (log Kow 3.8137), which frequently occurs in pulses
or fluctuating concentrations in streams3,5,6,8 and its metabolite
diazoxon inhibits acetylcholinesterase. Next to its use in agricul-
ture, diazinon is also used as insecticide in urban areas (e.g.,
against lice on roses, fish moths in wet rooms etc.). The diazinon
data originate from the study described inWittmer et al. (2010).8

The study area (Figure S1 in Supporting Information (SI)) is a
subcatchment embedded in the catchment of Lake Greifensee
located on the Swiss Plateau. The studied catchment covers 25 km2

and has a mixed urban and agricultural land use. We compared the

Figure 1. Calculation of the effect and risk curves (middle and upper panels in Figure 2). Toxic effects from time variable exposure patterns are predicted
with a mechanistic effect model (TKTD model). Extrapolation between species and from lethal to sublethal effects is achieved by multiplying the
exposure concentration (C(t)) with extrapolation factors. The extrapolation factors account for the variation in sensitivity of different species and effect
types, based on the data in Table 1 (see Scheme 1 for explanation of the calculation steps).
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temporal dynamics of diazinon concentrations in a subcatchment
with only agricultural land use (AGR in Figure S1 of the SI) to one
with predominant urban land use (URB in Figure S1 of the SI,
including effluent from the wastewater treatment plant (WWTP)).
Settlements located in the subcatchment AGR are connected to the
sewer system inURB. There is no urban stormwater discharged into
the river in AGR. We compared the dynamics of the two subcatch-
ments to the dynamics at the outlet of the entire catchment (TOT in
Figure S1 of the SI), which comprises 470 ha of arable land and
12 000 inhabitants (10 000 in the subcatchment URB).
The three stations weremonitored from 10th ofMarch to 26th

of June 2007. During several rain events throughout the mon-
itoring period, samples were taken at a high resolution (15min to
hourly composite samples). Weekly grab samples were taken
during dry weather conditions. Samples were stored at minus
20 �C in the dark to prevent degradation. Prior to analysis an
isotope-labeled internal standard was added to 50 mL of filtered
sample. Analytes were enriched with online solid phase extrac-
tion, separated by liquid chromatography, and detected by
tandem mass spectrometry (SPE-LC-MS/MS). For details on
the analytical method, see Singer et al. (2010)38 and for details on
sampling procedure and sites see Wittmer et al. (2010).8

Ecotoxicological Data. We demonstrate the method on the
example of a catchment in Switzerland and Swiss protection
goals. Swiss protection goals for surface water aim to protect
fisheries, the health of animals and biological processes needed
by plants and animals to fulfill their physiological needs, speci-
fically metabolism, reproduction, and olfactory orientation.39,40

Thus we considered sublethal toxic effects as relevant and
corresponding to the protection goals and collected such data
for diazinon and aquatic organisms as input for this case study.
Lethal data were not used in calculations, because assessment
based on sublethal data is also protective for effects on survival.
Risk assessments for different protection goals may use different
criteria to select input data.
Ecotoxicological data on sublethal effects of diazinon in

aquatic organisms were collected from two sources. The RIVM
database contains data from the U.S. EPA and The Netherlands
National Institute of Public Health and the Environment
(RIVM)41 until the year 2000 (D. de Zwart Pers. comm.) and
is quality controlled (see de Zwart41 for procedure). From this
database we selected all entries for sublethal effects on freshwater
organisms (i.e., excluding mortality, immobility, abundance, and
undefined effect types), which yielded twelve records. From
these records, we deleted data on algae (1 record) because they
do not carry the target enzyme, the acetylcholinesterase, and are
not as sensitive as fish and invertebrates toward diazinon. Effect
sizes for NOEC values were taken from Crane and Newman42

and Suter et al.43 Additional data were collected from peer-
reviewed literature by searching the SCOPUS database. The
query for “diazinon” “toxicity” “*water”AND (year after 2000) in
title, abstract, or keywords yielded 102 abstracts (15 February
2011). From these, we selected studies with information relevant
to the Swiss water protection goals yielding six additional
records. Here, effect sizes were taken from the original refer-
ences. All studies are listed in Table 1.
Toxicokinetic-Toxicodynamic Model. The TKTD model

was previously parametrized to simulate survival of the stream
dwelling arthropod Gammarus pulex.19 The freshwater arthro-
pod G. pulex is frequently used in ecotoxicological studies,44 is
very sensitive to diazinon (96 h-LC50 is 4.15 μg/L45) and
exhibits similar sensitivity to environmental pollutants as

Daphnia magna.46 G. pulex is abundant in headwater streams of
our case study catchment. Furthermore, its longevity makes it a
suitable test organism to parametrize a TKTD model, which
captures the relationship between time and toxicity for diazinon,
including carry-over toxicity.19 G. pulex requires approximately
28 days to recover from toxic stress caused by diazinon.19 If G.
pulex is pre-exposed to diazinon, then a subsequent exposure can
cause stronger toxic effects than what would be expected from a
one�pulse exposure alone.19 Such carry�over toxicity was
caused by slow organism recovery as shown by the TKTD
model.19 The TKTD model for diazinon and G. pulex simulates
the time-course of toxicant uptake, biotransformation and elim-
ination as a first step (toxicokinetics, TK) and the development
of damage within the organisms and subsequent increased
mortality as a second step (toxicodynamics, TD).19 This TKTD
model corresponds to the special case of stochastic death in the
General Unified Threshold Model of Survival.17 The model was
parametrized usingmeasured internal concentrations of diazinon
and its biotransformation products, in particular diazoxon, within
G. pulex as well as long-term survival experiments with pulsed
exposure patterns.19 This mechanistic model describes the
processes leading to toxicity on a temporal scale and so captures
the time-toxicity relationship for survival ofG. pulex and diazinon
(step 1 in Scheme 1). Thus, the model can be used to predict
survival of G. pulex for other, untested diazinon exposure
patterns. Here we also use the TKTD model as a proxy for the
time-toxicity relationships of other combinations of species and
effect type, because the TKTD model for survival of G. pulex is
the best approximation for these unknown time-toxicity relation-
ships that we have, even if that requires some bold assumptions.
We used the TKTD model for two purposes. First, we

calculate extrapolation factors for extrapolation from G. pulex
to other species and effect types. Second, we simulate the time-
course of risk of adverse toxic effects for aquatic organisms.
Details of both calculations follow below.
Assumptions about the Relationship between Exposure

Time and Toxicity.Assumptions about the relationship between
exposure time and toxicity are rarely made explicit in current risk
assessment schemes. The default method for dealing with time-
variable exposure concentrations in risk assessment is to use
time-weighted average concentrations.10,47,48 This method is
based on Haber’s law and assumes that the product of exposure
time and concentration determines toxicity, i.e., the same time
integral of concentration yields the same toxicity,10,49 and that
carry-over toxicity does not occur. Consequently, the average
concentration of a fluctuating exposure pattern is assumed to
result in the same toxicity as the fluctuating exposure. Deviations
from Haber’s law can be caused by toxicokinetics (carry-over
bioaccumulation), toxicodynamics (carry-over toxicity) or both.
Relationships between time and toxicity can be modeled with
TKTD models,17 such as the one we base the proposed risk
assessment on.19 We assume that the relationship between time
and toxicity in all the species that we address with our risk
assessment is the same as that in G. pulex. This does not mean
that we assume the same sensitivity, but we assume the same
organism recovery time.18 Assuming that all assessed species
resemble G. pulex in their time-toxicity relationship is the best
currently possible approximation, because to date G. pulex is the
only species for which a time toxicity relationship of diazinon was
quantified with a TKTD model. We further assume that an
extrapolation factor that we multiply exposure concentrations
with, can account for sensitivity variation of different species
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and effect types. This is necessary because we lack the knowledge
to incorporate possible nonlinearity in that aspect of sensitivity
variation. Note that applying species sensitivity distributions or
assessment factors to averaged exposure concentrations, as in
standard procedures,35,47,48 also assumes the same time-toxicity
relationship for all organisms and it ignores the possibility of
carry-over toxicity.
Extrapolation Factors.We define extrapolation factors (EFs)

as ratio between the lethal concentration for x% of G. pulex at
duration t (LCx(t)) and the effect concentration for x% effect in
the ecotoxicological studies with different species and effect types
at duration t (ECx(t)) (Table 1, step 3 in Scheme 1). Multiplying
the effect concentration ECx(t)i from a study in Table 1 with the
extrapolation factor EFi, results in the corresponding lethal
concentration LCx(t)i for G. pulex for the same duration t and
same effect size (x%).
Derivation of EFs for the ecotoxicological studies in Table 1

(step 2 in Scheme 1) requires first calculating the LCx(t)i of
G. pulex that corresponds to the same duration t and x percentage
effect of the sublethal effects ECx(t)i on other species than
G. pulex. This calculation was carried out using the TKTDmodel:
survival of G. pulex under a constant exposure concentration
LCx(t)i was simulated and the concentration adjusted such that
the effect level onmortality ofG. pulex corresponded to the effect

level (x %) of the sublethal effects ECx(t)i on the other species
after the duration t. EFi was calculated as ratio LCx(t)i/ECx(t)i.
All EFs were log transformed to achieve normally distributed

data (passed Kolmogorov�Smirnov test, D’Agostino and Pear-
son omnibus normality test and Shapiro-Wilk normality test).
Multiple values of EFs for the same combination of species and
effect type were replaced with their median (last column in
Table 1). The log-transformed EFs in our case study are char-
acterized by a normal distribution with mean 0.3325 and stand-
ard deviation 1.667 (n = 11). This is step 4 in Scheme 1.
We also calculated EFs for mortality caused by diazinon in

different aquatic species in the RIVM database and compared
their distribution to sublethal EFs (see SI). Here, only the
distribution of sublethal EFs was used in further analyses (see
rationale in section Ecotoxicological data).
With the assumptions that the time-effect relationship for

G. pulex and diazinon resembles that of the other combinations
of species and effect type and that the EF captures sensitivity
variation, one can do the following calculations: First multiply
the concentration time series of diazinon in any exposure pattern
with the EF for a given combination of species and effect type.
Then use that concentration time series as input in the TKTD
model calibrated forG. pulex survival and simulate the time-course
of effects for the combination of species and effect type of that EF.
Effect Simulations. We repeatedly simulated survival of

G. pulex in response to measured concentration time series in a
small stream multiplied with the EF. Without multiplying expo-
sure with the EF the simulation would predict survival ofG. pulex.
With the EF the simulated effect curve is the prediction for a
sublethal effect on another species. If the simulation were done
with one of the EFs from Table 1, then the simulated effect curve
would be the time course of effect for that specific combination of
biological species and sublethal effect type. The application of
the extrapolation factor changed the interpretation of the model
output from simulated time-course of survival of G. pulex into
simulated toxic effects for the respective combination of aquatic
organisms and effect type.
We randomly sampled 1000 log EFs from the normal distri-

bution of log-transformed sublethal EFs, back-transformed them
to EFs (denoted EFn), multiplied the concentrations in the ex-
posure time series with these EFs and simulated the time-course
of effect with the TKTD model for each of these instances (see
Scheme 1, step 5). The same 1000 EFs were used for each of the
three concentration time-series corresponding to the total catch-
ment and its urban and agricultural subcatchments, respectively.
The survival probability S(t), which is the output of the orig-

inal TKTD model,19 was then converted to effect as follows:

Ef f ectnðtÞ ¼ ð1� Snðt,CðtÞ � EFnÞÞ � 100% ð1Þ
where EFn [�] is the extrapolation factor in simulation run n
(out of 1000 runs),C(t) [nmol/L] is the measured concentration
time series of diazinon8 and Effectn [�] is the predicted effect
size. Effect size has the same interpretation as in the ecotoxico-
logical study that corresponds to the EF, e.g., at the EF of 0.6082 a
simulated effect of 0.1 could be interpreted as swimming being
affected in 10% of Oncorhynchus mykiss (see Table 1).
Calculation of Risk. Risk can be defined as the probability of

an undesired event.50 Here we assume that the ecotoxicolog-
ical data in Table 1 represents variability in sublethal toxicity of
diazinon to fish and aquatic invertebrate species that the Swiss
protection goal aims to protect. Thus we define an undesired
event as one where Effect(t)n exceeds 50%, i.e., where 50% of

Scheme 1. Step by Step Explanation of the Risk Assessment
Calculationsa

a Step (1) is the calibration of the toxicokinetic-toxicodynamic (TKTD)
model.19 Step (2) generates the data for the probabilistic risk assess-
ment, which is carried out in steps (3) to (6). The TKTDmodel is used
in steps (3) and (5).



9788 dx.doi.org/10.1021/es202413a |Environ. Sci. Technol. 2011, 45, 9783–9792

Environmental Science & Technology ARTICLE

the organisms of a species suffer from an undesired toxic effect
(one could also chose a different effect size). As we simulated a
sample of 1000 effect curves based on the distribution of EFs,
we can calculate risk as the fraction of those simulations where
Effect(t)n exceeds 50% (Scheme 1, step 6). As each of the 1000
EFs drawn from the distribution represents a single, possible
combination of species and type of sublethal effect, this is
the fraction of affected combinations of species and effect type,
i.e., risk (top panels in Figure 2).

’RESULTS AND DISCUSSION

Extrapolation Factors. The toxicity data from literature and
thereof derived EFs are listed in Table 1. The distributions of EFs
for lethal and sublethal effects are plotted in Figure S1 of the SI.
Both distributions span about 5 orders of magnitude. Even
though EFs for sublethal effects are larger by approximately 1
order of magnitude, a considerable overlap in the two distributions
is obvious. This comparison indicates that differences among spe-
cies contribute more to variation than differences between lethal
and sublethal effects.
Time-Course of Effect and Risk to Aquatic Organisms.The

measured diazinon concentrations fluctuated strongly (Figure 2,
lower panels). At the outlet of the catchment (station TOT,
Figure S2 of the SI), elevated background concentrations be-
tween 0.5 and 1 nmol/L were observed throughout most of the
study with pronounced peaks occurring at irregular intervals.

Discharge of station URB (Figure S2 of the SI) consists mostly of
urban stormwater runoff and effluent of the WWTP. There was
no high peak at the beginning of the time series, as in the agri-
cultural part of the catchment, but background concentrations
were higher than at the outlet of the entire catchment (TOT)
because there was less dilution of the WWTP discharge by
discharge from agricultural areas.
Using measured time-courses of diazinon concentrations as

input for modeling resulted in a risk of adverse effects to 17%
(TOT), 20% (URB) and 24% (AGR) of aquatic organisms at the
three monitoring stations (Figure 2, top panels). Interestingly,
the temporal onset and contribution of urban and agricultural
sources to the risk varied between sites.
Selected percentiles of the effect curves predicted using the

TKTDmodel are plotted in Figure 2, middle panels. Effect curves
show the increasing effects over time for the chosen percentiles of
combinations of species and effect type in relation to the con-
centration curve plotted below. From left to right (total, urban,
agricultural part of the catchment) the exposure profiles affect a
larger fraction of combinations of species and effect type and
more severe effects are seen earlier. In the agricultural exposure
profile the first high peak is the dominant toxic event, whereas in
the other two profiles toxicity results from combination of lower
long-term exposure and short peaks.
Low long-term and low-level pollution from urban sources of

diazinon, which was observed at stations TOT and URB, caused
risk for the 5% most sensitive combinations of species and

Figure 2. Measured concentrations of diazinon (lower panels) in different parts of the catchment, effect curves simulated for different percentiles (solid
lines from left to right: 95th, 90th, 87.5th, 85th, and 80th percentile) of the extrapolation factor distribution (middle panels) and the risk (top panels).
Risk is the fraction of probabilistic simulations that show toxic effects, i.e. the fraction of affected combinations of species and effect type (see Figure 1 and
Scheme 1 for calculation steps). In the lower panels, a peak originating from the agricultural part of the catchment is indicated by (a) and elevated
concentrations originating from the urban part by (b). Note the different scale of the y-axis in the lower panel (station AGR). Day 0 corresponds to the
March 10, 2007. The effect curve of the example AA-EQS value is plotted in the middle panels (dashed line).
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sublethal effect type (Figure 2, middle panels, 95th percentile
curve). The high peak around day 8, coming from the agricultural
part of the catchment (labeled (a) in Figure 2, lower panels),
raised the risk in station TOT to 11%. The lower exposure levels
between days 25 and 45 increased the risk by another 2% and
then peaks around day 60 raised the risk to the final total of 17%
in station TOT. After day 50 risk at station URB increased to
higher percentiles than at station TOT, i.e., toward the end of the
monitoring period, we predict that more combinations of
species and effect type are affected at station URB (20%) than
station TOT (17%).
A different situation was observed at the monitoring station

AGR, where discharge consists only of agricultural and some
road runoff. Hardly any constant background concentrations
were observed. Instead short concentration peaks occurred
(Figure 2, lower panels). Being about 1 order of magnitude
higher than at the other two stations, the short pulse (1 to 2d)
around day 8, caused most likely by agricultural activities alone,
led to 24% of risk.
Risk Assessment of Time-Varying Exposure. The concept

of using fixed concentrations as water quality criteria is overly
simplistic because it ignores the temporal dimension of toxicity
that is evident from the examples above. Risk assessment based
on TKTD models demonstrates that the risk of adverse effects
can be caused by short, high peak exposures or by lower, long-term
exposures or by a combination of both. Due to the mechanistic
nature of the underlying TKTDmodel, which has been shown to
properly predict carry-over toxicity,19 we are confident that the
risk assessment procedure presented here captures the temporal
aspects of toxicity. Alternative methods (reviewed elsewhere2,7,10),
such as time-weighted averages, are less well qualified for risk
assessment of fluctuating concentrations, because they are not
able to predict carry-over toxicity.16 In this case study, the average
concentration underestimated toxicity by up to a factor of 4
(see below). Thus a dynamic, mechanistic effect model com-
plements classical risk assessment based on short- and long-
term quality criteria.
Quantification of spatial and temporal exposure can be carried

out together with toxicokinetic�toxicodynamic modeling of
effects, which places the temporal extrapolation of toxicity on a
mechanistic basis. The approach presented here separates the
temporal extrapolation step from the extrapolation to other
biological species and other end points (e.g., sublethal effects).
Consequently, the separated extrapolation steps can be tested,
re-evaluated, improved, and validated independently of each other.
The use of the EF for probabilistic risk assessment is in analogy

to the species sensitivity distribution approach.51 As with species
sensitivity distributions, the available relevant toxicity data deter-
mines the outcome of the risk assessment. The toxicity data
(Table 1) as input for the risk assessment model, can be easily
exchanged by a different set of toxicity data, perhaps to reflect a
different protection goal and risk assessment context. The com-
bination of TKTD models and probabilistic calculations allows
quantification of the time course of effect curves for different
combinations of species and effect type. Further, it allows cal-
culation of the time course of risk in response to fluctuating
exposure concentrations. The proposed time-resolved risk asse-
ssment method is generic and can be adopted for risk assessment
of other pesticides2 and biocides,52 or the assessment of pollu-
tion in the context of the Water Framework Directive.53

Comparison with Effects Based on Average Concentra-
tions. We quantified the difference in toxicity of the fluctuating

exposure patterns compared with the toxicity of their average
concentrations. For each of the three different exposure patterns
and for each of the three corresponding average exposure con-
centrations, we calculated the factor that the exposure time series
must be multiplied with to result in 50% mortality of G. pulex at
the end.
The concentration time series from the total catchment had

to be multiplied with 75 to result in 50% mortality at the end
(107.4 d), whereas the corresponding average concentration of
0.0760 nmol/L required multiplication by a factor of 96 for
the same toxic effect. For the fluctuating exposure time series
from the urban part of the catchment the factor was 46 and
for the corresponding average concentration of 0.1187 nmol/L
the factor was 62. For the fluctuating exposure time series from
the agricultural part of the catchment the factor was 26 and
for the corresponding average concentration of 0.0726 nmol/L
the factor was 101. Thus, in all three exposure patterns, the
fluctuating concentrations were more toxic than their averages
(1.28-, 1.35-, and 3.88-fold, respectively). Here, the TKTDmodel
was used to simulate toxicity for the full length of the exposure
profile. In practice, the time-weighted average concentrations are
calculated for a shorter period of time2 and how large the resulting
error of these methods is needs to be systematically investigated.
Comparison with Environmental Quality Standards. For

comparison with environmental quality standards derived with
the commonly appliedmethod in the EuropeanUnion,54 we took
the Annual Average Environmental Quality Standard (AA-EQS)
of 0.015 μg/L (0.049 nmol/L) from a report55 that compared
different methods to derive environmental quality standards for
Swiss surface waters. Assuming 365 days as a test duration and an
effect size of 10% for the AA-EQS, which is generally derived
from NOEC data, we calculated the corresponding EF as 141.
This EF corresponds to the 88th percentile of the EF distribu-
tion, thus it protects 88% of combinations of species and effect
type based on the data inTable 1. The corresponding effect curves
are plotted in themiddle panels in Figure 2 (AA-EQS, dotted line).
The average concentrations in stations TOT, URB and AGR
were 0.076 nmol/L, 0.119 nmol/L and 0.073 nmol/L, respec-
tively. Thus comparison with the AA-EQS of 0.049 nmol/L
already indicates a risk. The added value of the probabilistic asse-
ssment is the quantification of total risk from any exposure pattern
and the possibility to investigate effects on specified percentiles
of species effect combinations.
Uncertainty and Limitations.Ecotoxicological data for this case

study comprises only three taxonomic groups: rotifers (3 studies),
crustaceans (7 studies), and fish (7 studies). We do not know
how well this limited diversity of taxa in our data captures varia-
tion in sensitivity between different species. Similarly diversity of
effect types in our data set is limited and biased toward repro-
duction in rotifers and crustaceans and growth in fish. As with any
modeling study, quality of the results depends on the input data.
In this case, the limited diversity of species and effect types in the
ecotoxicity database poses the greatest source of uncertainty. The
desired diversity in ecotoxicity data was also discussed in the con-
text of species sensitivity distributions51 and these discussions
suggest, that also for studies like the one presented here, a higher
diversity of ecotoxicological data is needed.
Variation in sensitivity of different species and effect types

spans several orders of magnitude, whereas the difference be-
tween the toxicity of the fluctuating exposure profiles and that of
their corresponding average concentrations was less than 4-fold.
Thus we improved prediction of toxicity for fluctuating
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concentrations with our method, but these improvements may
be small compared to the uncertainty due to limited diversity of
toxicity data. Consequently, the potential of this newmethod can
best be realized in combination with larger sets of ecotoxicity
data. For small sets of ecotoxicity data large uncertainties remain.
Relevant Sources and Priorities for Mitigation Measures.

Urban and agricultural sources of diazinon contributed to the risk
of adverse effects on aquatic organisms in the studied catchment.
Their respective contribution varied and cannot be quantified a
priori or as any fixed ratio. Rather, both sources contributed with
variable proportions and the relationship by which long-term
pollution and short concentration peaks induce adverse effects is
nonlinear. From a practical point of view, the analysis demon-
strated that, depending on the location in the river network,
either urban or agricultural sources of diazinon or their interplay
caused a risk of adverse effects. Without the TKTD model, just
relying on the observed concentration data, it was difficult to
judge the ecotoxicological relevance of the different exposure
patterns and sources. Through the TKTD modeling, we learn
that an integrated approach to risk mitigation that targets both
urban and agricultural sources is most likely to efficiently reduce
risk of adverse effects to aquatic organisms. Hence it is important
to understand the dynamics of discharge from different sources.8

For diazinon, restrictions or mitigation measures on both urban
and agricultural uses, are required.
Spatial Aspects of Risk Assessment in Aquatic Systems.

Availability of measured concentrations time-series at different
locations in the catchment raises the question how to aggregate
risks calculated at various locations in any given river network.
Our set of three locations illustrates that the same event, for
example the high peak originating from the agricultural area
around day 8, may cause strong risk of adverse effects in one
location (24% in AGR) but much less in another (11% in TOT).
Integration of TKTD models with spatially explicit models for
populations, such as individual or agent based models,56,57 may
be one possible solution if the assessment is carried out at the
population level. If however, the protection goal is aimed at the
organism level, then the question of how to aggregate risk of
adverse effects from different locations remains.
Research Needs. TKTD models can handle fluctuating con-

centrations of micropollutants. However, the approach is cur-
rently limited by the availability of model parameters. These
parameters are unique for each combination of chemical and
biological species and more of these relationships of time and
toxicity need to be quantified. The current reliance on one such
relationship for all other assessed species carries uncertainty,
which we need to quantify and reduce. If TKTDmodels for more
species, compounds, and effect types were available, then these
could ultimately replace the extrapolation factors used here. Raw
data from standard acute toxicity tests can already be used for
parametrization of TKTD models17 and selection of species and
sublethal end points for TKTD model development58 could be
prioritized based on ecological considerations (e.g., trophic posi-
tion, ecosystem services) to maximize relevance.
We assessed the risk from one compound alone, although it is

known that multiple chemical stressors occur simultaneously or
after each other, also in the catchment studied here.8 Risk asse-
ssment of mixtures in time is important as different compounds
can interact and contribute to mixture toxicity even if they occur
days22 or weeks apart.15 TKTDmodels for mixtures of chemicals
are available,15,59 but their relationship to standard models for
toxicity of mixtures with simultaneous, constant exposure is not

well established.60 TKTD models for temporal mixtures can ex-
plain phenomena such as the sequence effect,15 which is caused
by carry-over toxicity, however the large number of model para-
meters needed to assess the temporal mixtures of chemicals on a
catchment scale are not available yet.
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