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Abstract—The authors present a method to predict fish survival under exposure to fluctuating concentrations and repeated pulses of a

chemical stressor. The method is based on toxicokinetic-toxicodynamic modeling using the general unified threshold model of survival
(GUTS) and calibrated using raw data from standard fish acute toxicity tests. The model was validated by predicting fry survival in a fish early
life stage test. Application of the model was demonstrated by using Forum for Co-ordination of Pesticide Fate Models and Their Use surface
water (FOCUS-SW) exposure patterns as model input and predicting the survival of fish over 485 d. Exposure patterns were also multiplied
by factors of five and 10 to achieve higher exposure concentrations for fish survival predictions. Furthermore, the authors quantified how far
the exposure profiles were below the onset of mortality by finding the corresponding exposure multiplication factor for each scenario. The
authors calculated organism recovery times as additional characteristic of toxicity as well as number of peaks, interval length between peaks,
and mean duration as additional characteristics of the exposure pattern. The authors also calculated which of the exposure patterns had the
smallest and largest inherent potential toxicity. Sensitivity of the model to parameter changes depends on the exposure pattern and differs
between GUTS individual tolerance and GUTS stochastic death. Possible uses of the additional information gained from modeling to inform

risk assessment are discussed. Environ. Toxicol. Chem. 2013;32:954-965. © 2013 SETAC
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INTRODUCTION

Assessing the ecological risk of plant protection products
(PPPs) requires the comparison of toxicity data for sensitive
nontarget species with worst-case predicted exposure concen-
trations in the environment. Toxicity data used in these
assessments usually are obtained from studies in which exposure
concentrations are maintained for the duration of the experi-
ments, usually lasting several days (for acute studies) to several
weeks (for chronic studies). However, under realistic environ-
mental conditions, concentrations of PPPs in aquatic systems
will fluctuate, and exposure profiles may vary substantially [1—
3]. Risk assessments do not typically consider the nature of
effects on nontarget species from fluctuating exposures that are
likely to be encountered in the field; instead, peak or time-
weighted average concentrations usually are used [4-6]. To
assess the environmental risk of PPPs, time series concentrations
in surface water bodies are predicted using environmental fate
models [3,7]. At present, it remains unclear how to appropriately
integrate these exposure profiles with the effect assessments to
refine the risk assessments [3].

Classical data analysis methods, more specifically concen-
tration—effect curve models do not account for temporal aspects
of exposure and toxicity [5,8—11]. However, in recent years
alternative toxicity models that consider temporal aspects
of toxicity have been developed [3,9,12]. Toxicokinetic-
toxicodynamic (TKTD) models simulate the time course of
processes that lead to intoxication and can account for carry-over
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toxicity and delayed effects, which can be caused by slow
elimination, slow organism recovery, or a combination of both
processes [13]. Moreover, they can process fluctuating or pulsed
exposure concentrations as an input to predict survival over time.
Thus, they are well-suited for risk assessment of dynamic
chemical stress [3,9]. Recently, TKTD models for survival have
been unified and integrated in the general unified threshold
model of survival (GUTS) [8].

Standard toxicity tests are typically carried out with
maintained exposures, whereas measured and simulated
exposure to PPPs in water bodies generally occur in fluctuating
and highly variable patterns [1-4,7]. Thus, toxicity must be
extrapolated from relatively constant to relatively variable
exposure profiles. Toxicokinetic-toxicodynamic models simu-
late the time course of processes leading to toxicity, including
processes that cause carry-over toxicity or delayed ef-
fects [9,13]. Carry-over toxicity can be caused by bioaccumu-
lation and slow elimination, as well as slow toxicodynamic
(TD) organism recovery [8,13]. The ability to model carry-over
toxicity is the key reason why greater confidence can be placed
in toxicity extrapolations for fluctuating or pulsed exposure
patterns based on TKTD models rather than on predictions
based on time-weighted averages [8,9,13,14]. Furthermore,
TKTD model parameters have a mechanistic interpretation and
can thus be evaluated with other studies, such as bioaccumu-
lation tests. Toxicokinetic (TK)models have been demonstrated
to accurately predict internal concentrations in fish [15]. Several
reviews of the extrapolation of toxicity to fluctuating exposures
are available [5,9,16,17], and some studies have investigated
the calibration and predictive power of TKTD models for
survival [14,18,19]. Thus, TKTD models offer options for
higher-tier risk assessment tools that can be used
for robust evaluations of likely effects resulting from time-
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varying exposure, which is likely to be the rule rather than the
exception.

Here, we present a case study for a PPP in which fish survival
under fluctuating concentrations is simulated using a TKTD
model. The model is first calibrated using standard laboratory
data from acute fish toxicity studies and is then validated by
comparing the predicted survival with that from an independent
experiment. Predicted surface water concentration profiles for
the PPP are generated using the Forum for Co-ordination of
Pesticide Fate Models and Their Use surface water (FOCUS-
SW) model [7]. Application of the TKTD model is demonstrated
by using these FOCUS-SW exposure patterns as model input
and predicting fish survival for a 485-d period from the exposure
modeling. The objective of the present study is to demonstrate
the method, illustrate what kind of information can be derived,
and indicate how that additional evidence can be used to inform
and refine environmental risk assessments.

MATERIALS AND METHODS

Test substance

The present study was carried out with benzovindiflupyr, a
broad-spectrum pyrazole carboxamide fungicide (fungicidal
mode of action via succinate dehydrogenase inhibition [SDHI],
causing respiration inhibition at complex II).

Toxicity data

Fish acute toxicity data were generated using the Organisa-
tion for Economic Co-operation and Development (OECD) test
guideline 203 with carp (Cyprinus carpio) and fathead minnow
(Pimephales promelas). These two species were the most
sensitive of five tested (see Discussion and Supplemental Data),
with 96-hour median lethal concentrations (LC50) of 3.5 and
4.7 ng/L for carp and fathead minnow, respectively. Raw
survival data for daily survival, mean measured exposure
concentrations, and control mortality data were used for the
modeling.

Exposure data

Predicted surface water concentration profiles were generated
using the FOCUS-SW models [7]. Simulations were for one and
two applications to cereals (spring and winter) at 75 g active
substance per hectare with a 14-d interval between applications.
Six exposure profiles were selected from all the relevant cereal
scenarios for analysis with TKTD models. These were the
FOCUS-SW drainage scenarios D1 ditch, D1 stream, D2 ditch,
D2 stream, D4 stream, and D6 ditch (see [7] for detailed
descriptions). These profiles cover the worst-case, or extreme
worst-case temperature, soil, and hydrology conditions for
surface water exposure via drainage and consequently the
highest predicted concentrations for the European Union
scenarios. The complete 485-d water concentration—time series
generated from the FOCUS-SW model TOXic substances in
Surface WAters (TOXSWA) was used as the time-variable
exposure input for the TKTD modeling of fish survival.

GUTS

A framework for TKTD modeling has been recently
published that unifies all previously used TKTD models for
survival [8]. This GUTS can be reduced to two special cases,
which are based on the assumption of either individual tolerance
distribution (GUTS-IT) or stochastic death (GUTS-SD) [8,19].
These two extreme cases of the GUTS were both used with the
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scaled internal concentration (see Scaled internal concentration
section, below) as the dose metric [8]. The two cases can be
derived for the assumption of SD and the assumption of IT,
whereas the “real” behavior is likely somewhere in between. In
other words, these two special cases provide the boundaries of
the “real” time course of toxicity that would be predicted by a
more complex and difficult-to-calibrate mixed SD and IT model
(see Jager et al. [8]).

The two models GUTS-SD and GUTS-IT are described
briefly below (see GUTS-SD and GUTS-IT sections). For a full
explanation please see Jager et al. [8]. A non-mathematical
review is described in Ashauer and Escher [9]. Note, however,
that the GUTS-SD and GUTS-IT models do not require any a
priori assumptions about the speed of compound elimination or
the speed of organism recovery. These models let the data speak
and capture information on the time course of toxicity in their
model parameters during the calibration step. This is an
important improvement over previous TKTD models, such as
critical body residues or critical target occupation, which
required a priori assumptions on the speed of recovery. These
previous models are unified in GUTS, which is currently the
most general and rigorous framework to predict survival over
time.

Scaled internal concentration

The scaled internal concentration is defined as the internal
concentration divided by the bioconcentration factor (the ratio of
uptake rate constant and elimination rate constant). Its plot over
time follows the same time course as the internal concentration;
however, the calculation of the scaled internal concentration
requires only one parameter. In cases where the time course of
internal concentrations is not measured, then the scaled internal
concentration should be used [8]

dCi(t)
dt

— ke x (Cw(z) — Ci(t)) (1)

where Ci(f) is the time course of the scaled internal
concentration (pug/L), t is time (day), Cw(t) is the time course
of the concentration in water (ug/L) and ke is the dominant rate
constant (1/d). The dominant rate constant quantifies the
elimination of the substance (TK) and the organism recovery
(TD). We fit the parameters of Equation 1 using the time course
of fish survival data (see Model calibration section below)
because measured internal concentrations are not available. In
this case, the time course of the scaled internal concentration
captures both the time course of toxicant elimination and the
time course of organism recovery. Both processes (TK and TD)
potentially play a role, but we cannot differentiate between
them without measured internal concentrations and approxi-
mate the two-compartment system by a one-compartment
system. The time course of toxic effects will be dominated by
the slower of these two processes. Thus, rather than elimination
rate constant or organism recovery rate constant, the parameter
ke is termed the dominant rate constant and reflects the time
course of TK and TD combined [8,19]. For the same reasons,
Ci(t), which we use as the dose metric, reflects the time course
of internal concentrations of the substance and the time course
of damage it causes (see Jager et al. [8] for a detailed
discussion).

GUTS-SD

The instantaneous probability for an organism to die
is the hazard rate [8]. For GUTS-SD, the hazard rate is
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calculated as

dH (1)
Cdr

where dH(t)/dt is the hazard rate (1/d), kk is the killing rate
constant (L/[wg x d]), Ci(t) is the time course of the scaled
internal concentration (ug/L), ¢ is time (day), z is the threshold
(ng/L) and h_controls is the background hazard rate (control
mortality rate, 1/d). The GUTS-SD assumes that all individuals
in the test population have the same threshold, z (see also Jager
et al. [8] and Nyman et al. [19]). The survival probability—that
is, the probability of an individual to survive until time t—is
given by

= kk x max(Ci(t) — z,0) + h_controls  (2)

S(t) = e 110 (3)
where S(t) is the survival probability (—).

GUTS-IT

The GUTS-IT model assumes that the value of the threshold z
differs among individuals in the test population and follows a
distribution (see also Jager et al. [8] and Nyman et al. [19]).
When the threshold is exceeded, it is assumed that the individual
dies immediately. Here, GUTS-IT also uses the scaled internal
concentration as dose metric (Eq. 1) and the threshold z is the
scaled internal concentration above which the individual dies
instantly. Thus, the number of deaths over time can be calculated
based on the distribution of the threshold z in the population. The
cumulative log-logistic distribution of the threshold z is
calculated as

F() = 1
1+ (max0<g<, Ci(o-)) —B (4)

(o3

where F(t) is the cumulative log-logistic distribution of the
threshold z over time (—), Ci(o) is the time course of the
scaled internal concentration (ng/L), zis time (day), o (day) is
time before the current point in time ¢, « is the median of the
distribution of z (ug/L), and B is the shape parameter of
the distribution of z (—). The survival probability—that is,
the probability that an individual will survive until time t—is
given by

S(t) _ (1 _ F(l‘)) % e—h_controlsxt (5)

where S(t) is the survival probability (—) and h_controls is the
background hazard rate (control mortality rate, 1/d).

GUTS-SD and GUTS-IT in multiple pulse exposures

Due to their inherent assumptions, the models GUTS-SD and
GUTS-IT result in different survival predictions for repeated
pulse exposures. The SD approach assumes that death is a chance
process; thus, the proportion of a population that is killed by a
series of identical pulses remains constant, irrespective of
previous exposure. The IT approach assumes that there is a
distribution of tolerances in the exposed population so that
tolerant individuals will not be affected by repeated exposure to
the same (or lower) toxicant concentrations. To illustrate these
assumptions, consider a hypothetical example with two identical
pulses in sequence, where the first pulse kills 50 out of 100 fish.
Given that the interval between the two pulses is long enough for
complete elimination of the substance and organism recovery,
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GUTS-SD would predict that the second pulse kills 25 fish,
whereas GUTS-IT would predict that the second pulse kills zero
fish. Mortality is a chance process in GUTS-SD, with all fish in
the population having equal probabilities to die and the same
probability applies at the first and second pulse. Mortality is a
deterministic process in GUTS-IT, following a distribution of
thresholds in the fish population, where the first pulse kills the
more sensitive fraction of all fish and the strong individuals
survive both the first and the second pulses. Thus, it is important
to use both models together (for detailed discussions
see [8,20,21]).

Model calibration

Raw data from the carp and fathead minnow toxicity tests
were used in the model calibration. Mean measured concen-
trations served as model input, whereas survival data for each
day and control mortality data served as calibration data. In
addition to the toxicity studies, a fish bioconcentration (OECD
test guideline 305) test with bluegill sunfish (Lepomis macro-
chirus) was available. The depuration rate constant (kd
= 1.2802 1/d) from the bioconcentration study was used as
initial value for ke in the model calibration for carp, which was
the first species for which we calibrated the TKTD model.

The parameters for GUTS-SD and GUTS-IT were found by
maximizing the log likelihood function (see Jager et al. [8] for
derivation)

n+1

In/(8]y) = Z (Vi-1 — yi)In(Si—1(8) — Si(8)) (6)

where [ is the likelihood, y is the time series of the number of
survivors, i is sampling date, n is the number of sampling dates, 6
is the vector of model parameters and S(0) is the survival
probability given 0. The likelihood was calculated for each
treatment (test concentration in the acute toxicity test) and the In
likelihoods for all treatments were summed. We then used the
downhill simplex algorithm to find the minimum -In likelihood in
parameter space. The parameter values at the smallest -In
likelihood are the best fit parameter values and are used to predict
survival in other exposure scenarios. Thus, information about the
time course of toxicity is extracted from the acute toxicity test
data, captured by the model and its parameter values, and then
used to predict survival with other concentration time series as
input (e.g., FOCUS-SW scenarios).

The parameters ke, kk, and z were calibrated for the GUTS-SD
model, and the parameters ke, «, and 3 were calibrated for the
GUTS-IT model. The confidence limits were calculated by
profiling the likelihood [22] for each parameter separately. The
95% confidence limits are reported. The mortality in the control
groups was used to calibrate the background hazard rate (i.e.,
approximate background mortality). Both the control and
solvent control survival data were combined for that analysis.
The resulting control mortality rate #_controls was 0.018 (1/d)
with confidence limits (0.001, 0.032) for carp. The survival data
for control fish in the acute toxicity test with fathead minnow did
not show any mortality. Because a background mortality rate of
zero is biologically impossible and causes computational
problems during calibration, the control mortality rate h_con-
trols was set to 0.00315 (1/d) for this species. This control
mortality rate corresponds to 10% survival over two years (730
d), reflecting the natural life span of the fathead minnow. The
control mortality rate was kept fixed when calibrating the other
model parameters.
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Model testing (validation)

A fish early life stage study (ELS; OECD test guideline
210 [23]) with fathead minnow was available to independently
test the model predictions with data other than the acute toxicity
test results. Survival of fry in the ELS study was compared to
survival predicted with GUTS-SD and GUTS-IT. In the ELS
study, testing was initiated with freshly fertilized embryos,
which were exposed for approximately 4 d until fry hatch and
then until 28 d posthatch. Survival was recorded daily over the
32-d exposure period. The survival of fry during the 28 d after
hatching was predicted with GUTS-SD and GUTS-IT using the
exposure concentrations in the ELS study as input. Nominal
concentrations were used, because measured concentrations
were sufficiently close to nominal. The exposure of embryos was
not taken into account in the modeling, because the change from
embryos to fry cannot be modeled with GUTS. Model
simulations therefore started after hatching, not taking into
account any potential toxicity resulting from pre-exposure of
embryos. The background mortality in the ELS study was
simulated based on fry survival in the controls. Because the
model was calibrated with data from the older life stages used in
standard acute toxicity tests but tested against data for fry
survival (generally considered a more sensitive life-stage), this
evaluation would provide insights into how conservative the
model predictions are likely to be.

Model predictions for realistic field exposure patterns

First, fish survival was predicted using the exposure time
series (hourly time step) from FOCUS-SW simulations directly
as input. The control mortality rate h_controls was set to zero for
the predictions of survival, because the interest was solely the
effect of the active substance on fish. The concentration time
series (total mass concentration of the substance in the water
column) of the TOXSWA simulations (file: *.cwa) was
converted to wg/L and used as input for the simulations with
GUTS-SD and GUTS-IT. Fish survival in these concentration
patterns was then simulated using the best fit parameters for
GUTS-SD and GUTS-IT, respectively.

Second, we simulated fish survival in FOCUS-SW exposure
patterns where the exposure concentrations were multiplied by a
standard factor to generate higher exposure concentrations. The
concentrations were multiplied with an exposure multiplication
factor of five or 10 and used as input for the simulations with
GUTS-SD and GUTS-IT. The purpose of this factor was to gain
some insight into the magnitude of difference between the
predicted exposure concentrations and those that would be likely
to cause mortality. For example, if an exposure scenario five or
10 times greater than the worst-case FOCUS exposures resulted
in limited mortality predictions, it would provide further
reassurance that mortality from field exposure was unlikely to
occur.

Margin of safety calculation

When the concentration profiles from TOXSWA are used
directly as input for the survival simulation, survival is 100% in
all surface water scenario exposure simulations. If the simulated
survival in the FOCUS-SW exposure patterns is 100%, even
when the concentrations are multiplied by a factor of five or 10, it
remains unclear how far these fluctuating concentrations are
below concentrations that might cause the onset of mortality. To
understand the potential hazard from the fluctuating exposure
profiles, it is desirable to quantify how far these concentrations
are below levels that cause mortality. This margin of safety can
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be quantified separately for each exposure pattern by finding the
exposure multiplication factor that corresponds to the onset of
mortality.

A practical definition of the onset of mortality is thus
required. In the present study, as a pragmatic solution, we chose
10% mortality over 485 d as a proxy for the onset of mortality.
Thus, each FOCUS-SW concentration profile was multiplied by
a factor such that the survival simulation would result in 10%
mortality at the end of the simulation period (485 d). These
factors were calculated separately for each scenario and each
model (GUTS-SD and GUTS-IT). Essentially, a data point was
defined for 90% survival at day 485 and then the model was
calibrated to fit that data point by changing the parameter factor.
This factor characterizes the margin of safety for each scenario;
that is, it quantifies how far the exposure profiles are below toxic
concentrations. The calculation of the factor using the TKTD
model takes the fluctuating nature of the concentration profiles
into account and accounts for carry-over toxicity.

Organism recovery times

Organism recovery times quantify the time that an organism
needs to recover from previous exposure so that carry-over
toxicity does not occur [13,24]. This time is characteristic for
each combination of species and toxicant and can be calculated
as the time that the dose metric (in the present study, Ci(t)) needs
until it has declined below 5% of its maximum after a pulsed
exposure. Previous studies have used a 1-d pulsed duration
followed by a sufficiently long postexposure period. The
concentration of the 1-d pulse exposure was chosen such that
the pulse eventually kills (including the postexposure period)
50% of the test population [13,19,24]. We simulated such a pulse
and monitored the increase of the scaled internal concentration
during the exposure and its subsequent decrease. This simulation
yields the time (organism recovery time) in which the scaled
internal concentration declines below 5% of its maximum after a
1-d pulse that eventually kills 50%. Because the scaled internal
concentration in our one-compartment model represents the TK
and TD, the organism recovery time measures how fast the
combined depuration of the substance and recovery of damage
is. The organism recovery time indicates how long the interval
between subsequent pulses should be before they can be viewed
as toxicologically independent exposure events. The organism
recovery time only depends on the dominant rate constant ke and
reflects combined TK and TD recovery.

Comparing the toxicity potential of different exposure patterns

We calculated the areas under the exposure curves using the
concentrations of each FOCUS-SW scenario multiplied with its
respective margin of safety (as previously defined). This ensures
that all exposure profiles in the comparison result in the same
effect (10% mortality after 485 d), and the differences in the
areas under the exposure curves characterize which patterns are
more or less toxic. Because all patterns result in the same effect,
patterns with lower areas under the exposure curve are inherently
more toxic, and patterns with larger areas under the exposure
curves are inherently less toxic. Thus, the toxicity potential of the
different exposure patterns can be compared by calculating the
area under the exposure concentration curve. We also calculated
three additional characteristics of each exposure pattern that help
to understand the toxicity potential: number of peaks, peak
duration, and distance between peaks. This calculation uses a
previously published stepwise classification algorithm to
identify peaks in the exposure time series [25].
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Sensitivity and uncertainty analysis

A sensitivity and uncertainty analysis was carried out by
varying each model parameter separately within its confidence
limits. A Monte Carlo simulation (1,000 runs) was set up with
uniform distributions ranging from the lower to the upper
confidence limit for each parameter. These simulations were
carried out with GUTS-SD and GUTS-IT for fathead minnow
and the FOCUS-SW exposure profiles with the highest (D4
stream) and the lowest (D2 ditch) inherent toxic potential. Each
scenario was simulated with the exposure multiplication factor
set to the respective margin of safety such that the simulation
with the best fit parameter values would result in 90% survival
over 485 d. The survival after 485 d was recorded for each Monte
Carlo run and plotted against the percentage variation in the
parameter value.

Model implementation

The models were implemented and run in ModelMaker
(Version 4; Cherwell Scientific). The code of the model
implementation has been thoroughly checked and tested and
has been used extensively in scientific research (see, for
example, Nyman et al. [19]).

RESULTS

Calibration

The parameter values of the best fit are given in Table 1
together with the corresponding likelihood value. The fitted
models are plotted together with the raw data from the acute
toxicity tests in Figure 1. Parameters converged to plausible best
fit parameter values for both fish species and both the GUTS-SD
and the GUTS-IT models without the need for parameter
constraints. These parameter values were used for the predictive
simulations with the concentration profiles from FOCUS-SW
scenarios. Profiles of the likelihood were calculated for each
parameter to derive the confidence limits. These likelihood

Table 1. Parameter values of the two limit cases of the general unified
threshold model for survival (GUTS), stochastic death (SD) and individual
tolerance (IT), after calibration to raw data from the fish acute toxicity test

Best fit 95% confidence
Parameter Units value limits

GUTS-SD, carp (7Zln likelihood = 14.5694, h_controls = 0.018 [1/d])

ke 1/d 1.00 0.82, 1.29
kk Lipg x d) 1.42 0.72,2.52
z pg/L 4.06 3.58, 4.42
GUTS-IT, carp (-3 In likelihood = 15.0071, h_controls = 0.018 [1/d])
ke 1/d 047 0.40, 0.54
a e/l 3.63 3.30, 4.03
B - 10.52 5.60, 21.9

GUTS-SD, fathead minnow (=) In likelihood = 16.7797, h_controls
= 0.0035 [1/d])

ke 1/d 1.28 0.87, 2.64
Kk Lipg x d) 0.42 0.20, 0.77
z ng/L 3.85 3.25, 4.20

GUTS-IT, fathead minnow (=) In likelihood = 18.5279, h_controls
= 0.0035 [1/d])

ke 1/d 0.47 0.34, 0.65
a pe/L 3.97 3.33,4.81
B - 5.54 2.85,9.54
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profiles served as further checks on the convergence of the model
fit.

In addition to fitting GUTS-SD and GUTS-IT to data from
carp and fathead minnow as reported in the present study, we
also fitted the two models to acute toxicity data from three
additional fish species (Oncorynchus mykiss, Cyprinodon
variegatus, and Lepomis macrochirus), which were less
sensitive than carp and fathead minnow. The model parameters
for these additional fish species can be found in the Supplemental
Data.

Model testing (validation)

The predicted survival of fathead minnow fry in the ELS
study is shown in Figure 2. Survival in the treatments with the
four lower concentrations is similar to the control mortality.
GUTS-IT predicted only background mortality for these
treatments, whereas GUTS-SD predicts a very small fraction
of additional mortality in the second-highest concentration (see
Figure 2, diamonds for data and dotted line for model
prediction). The treatment with the highest concentration
(4 ng/L) showed increased mortality, which was predicted
with very good visual agreement with the GUTS-IT model. The
GUTS-SD model also predicted mortality in the highest
treatment, although with a different time course and pattern
than observed.

Predicted survival in FOCUS-SW scenarios

Six FOCUS-SW scenarios were analyzed in combination
with two models (GUTS-IT and GUTS-SD), two species (carp
and fathead minnow) and the two application patterns (one or
two applications), resulting in 48 combinations. All 48
simulations using the TOXSWA output directly (realistic
simulation) resulted in 100% survival for all scenarios, fish
species, and both models. Thus, it can be concluded that no
mortalities are expected if fish are exposed to these concentration
profiles. All 48 simulations using the TOXSWA output
multiplied with an exposure multiplication factor of five resulted
in 100% survival for all scenarios and fish species with both
GUTS-IT and GUTS-SD. Thus, if an exposure multiplication
factor of five was applied, there would be no mortality in any of
the combinations of fish species, FOCUS-SW scenarios and
models.

The simulations using the TOXSWA output multiplied with
an exposure multiplication factor of 10 resulted in three of the 48
combinations with less than 100% survival (Table 2). These
three cases, all with the GUTS-IT model and two PPP
applications, were 99% survival of carp in D2 ditch and 99%
and 96% survival of fathead minnow in D1 ditch and D2 ditch,
respectively. This indicates that even at exposures an order of
magnitude greater than the worst-case FOCUS exposure
concentrations, the levels of mortality expected would be no
level of mortality to very low levels. The lack of mortality
indicated in the evaluation of the FOCUS scenarios themselves is
likely to be a robust conclusion. Figure 3 shows the example of
fathead minnow survival simulated with GUTS-IT, where the
two middle panels (Fig. 3B and E) illustrate the analysis using a
factor of 10.

Margin of safety

The safety margins ranged from a factor of 12 to 184
(Table 2). This demonstrates that the concentrations in the
original FOCUS-SW exposure profiles are a factor 12 to 184
below the levels where mortality might be expected in the
analyzed combinations of fish species and application patterns.
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Fig. 1. Model fit of general unified threshold model of survival-stochastic death (GUTS-SD; A,B) and general unified threshold model of survival-individual
tolerance (GUTS-IT; C,D) [8] to the raw data from acute toxicity tests with carp (A,C) and fathead minnow (B,D). In both experiments, only the two highest
concentrations yielded mortalities. These concentrations were 5.4 pg/L (dotted line, diamonds) and 10 pg/L (solid line, triangles) for carp and 4.4 pg/L (dotted
line, diamonds) and 9.4 wg/L (solid line, triangles) for fathead minnow. [Color figure can be seen in the online version of this article, available at

wileyonlinelibrary.com]

The distribution of the safety margins is plotted in Figure 4,
illustrating their range. Figure 3C and 3F illustrates survival of
fathead minnow simulated with GUTS-IT and a factor of 11.9,
which is the margin of safety for this combination of species,
scenario, and model.

Organism recovery times

The organism recovery times were calculated after a 1-d
pulse. The organism recovery times were 6.4 d for both carp and
fathead minnow in the GUTS-IT model. They are identical
because both species have the same value of the dominant rate
constant in GUTS-IT. For GUTS-SD, the organism recovery
times were 3.0 d for carp and 2.4 d for fathead minnow.

Comparing toxicity potential of different exposure patterns

The areas under the exposure curves for the different
FOCUS-SW scenarios are shown in Table 3. All exposure
patterns were multiplied with their respective margin of safety to
resultin 10% mortality after 485 d. The scenario D2 ditch had the
lowest inherent toxic potential because it requires the largest area
under the exposure curves to achieve 10% mortality. In contrast,
D4 stream had the highest inherent toxic potential because it
required the lowest area under the exposure curve to achieve
10% mortality. In other words, if the PPP was applied in
application rates such that scenarios D2 ditch and D4 stream had

the same area under the exposure curves, but preserved the
current shapes of the concentration time series, then D2 ditch
would be the least toxic and D4 stream would be the most toxic
concentration time series. Both FOCUS-SW scenarios are
shown in Figure 5, and Table 4 summarizes the additional
characteristics calculated for each exposure pattern.

Sensitivity and uncertainty analysis

The sensitivity of the model depends on the exposure pattern
and differed between GUTS-IT and GUTS-SD (Fig. 6). The
sensitivity of survival after 485 d toward changes in the
parameters alpha and beta of GUTS-IT were very similar in both
scenarios D2 ditch and D4 stream. However, the sensitivity
toward the parameters z and ke of the GUTS-SD model differed
strongly between the two exposure patterns. Because each
parameter was varied within its confidence limits, Figure 6 also
indicates the maximum change in survival after 485 d that can be
expected due to the uncertainty of a single parameter. Figure 6
clearly shows that this uncertainty also differs between
parameters, model, and exposure scenario. For example, the
largest change in survival after 485 d was observed for changes
in parameter z in the GUTS-SD model and the D2 ditch exposure
pattern. In D4 stream, changes in z do not lead to large changes in
survival after 485 d.
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Fig. 3. Illustration of method: Simulations of fathead minnow survival with GUTS-IT model in FOCUS-SW model D2 ditch (A,D), in D2 ditch exposure
concentrations multiplied with factor 10 (B,E), and in D2 ditch exposure concentrations multiplied with factor 11.9 (margin of safety, 90% survival over 485 d; C,
F). Graphs show predicted survival (A-C) and concentrations in the water body (D-F). FOCUS-SW = Forum for Coordination of Pesticide Fate Models and Their
Use (pesticide fate models used for environmental risk assessment in Europe) [7]. See Figure 2 caption for definition of GUTS-IT. [Color figure can be seen in the

online version of this article, available at wileyonlinelibrary.com]

under different exposure scenarios. To our knowledge, such an
extrapolation by any model has never been tested with
independent experimental data on fish survival over 485 d or
similar. Within the present study, data from an ELS test with
fathead minnows was used to test the predictive power of the
model over 28 d. The results indicated that the model is suitable
for estimating survival of fish following exposure to
benzovindiflupyr.

Margin of safety for different FOCUS-SW scenarios
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Fig. 4. Margins of safety quantify how far below toxic levels the exposure
patterns are. Each group consists of 12 data points that result from
simulations for the six FOCUS-SW scenarios analyzed with two models
(GUTS-SD and GUTS-IT). See Figures 2 and 3 caption for definitions of
FOCUS-SW, GUTS-SD, and GUTS-IT.

We used a one-compartment approximation, “reduced
GUTS,” of an essentially two-compartment system comprising
TK and TD. The elimination rate of substances in fish depends
on the size of the fish, which raises the question of whether the
dominant rate constant ke also depends on the size of the fish.
The model testing indicated that size differences between adult
fathead minnow and fry do not preclude toxicity extrapolation
from the adult to the fry. Nevertheless, the possible dependence
of ke and other GUTS parameters on organism traits needs
further investigation, especially for traits such as organism size
that change over time and under varying field conditions.

We carried out additional simulations to determine the
margins of safety for the additional three species of fish (O.
mykiss, C. variegatus, and L. macrochirus) in two scenarios
(lowest and highest inherent toxicity potential: D2 ditch and D4
stream, both with two applications). These simulations show that
carp and fathead minnow have consistently lower margins of
safety in those two fluctuating exposure profiles than the other
three species (Supplemental Data). This demonstrates that carp
and fathead minnow are more sensitive than the other tested fish
species, not only under conditions of the LC50 toxicity test, but
also under fluctuating exposure conditions.

The scaled internal concentration in our reduced GUTS
model stands for both the internal concentration (TK) and the
damage (TD) combined. It is important to realize that in this
model, the decline of the scaled internal concentration, for
example after exposure, can be slower than the actual depuration
of the substance if the recovery of the organism takes longer due
to lasting biochemical or physiological damage. The predictive
power of this so-called reduced GUTS model is equivalent to
that of the full GUTS model, which would include measured
toxicokinetics [8,19].

Interpreting predicted survival and margins of safety

In the present case study, the simulations with the TKTD models
showed that none of the tested fish would die when exposed to
benzovindiflupyr over 485 d at the predicted FOCUS-SW
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Table 3. Area under the exposure curve ( [Cwater) for the different exposure profiles (in pg x d/L) when they are multiplied with their respective safety margins®

Carp two Carp one Fathead minnow Fathead minnow
Scenario® applications application two applications one application
Exposure Model (GUTS)* ng x d/L ng x d/L ng x d/L ng x d/L
D1 ditch SD 822.5 770.8 789.0 727.5
1T 625.8 604.9 567.3 548.3
D1 stream SD 650.7 621.8 624.4 596.0
1T 495.7 477.3 449.3 432.6
D2 ditch SD 847.7 801.3 792.3 749.9
1T 683.6 650.0 619.7 589.2
D2 stream SD 724.7 606.0 676.7 572.5
1T 593.0 466.8 537.5 423.1
D4 stream SD 42.3 38.9 39.5 36.3
1T 43.7 40.5 39.6 36.8
D6 ditch SD 86.1 76.3 76.8 68.1
1T 92.2 82.5 83.5 74.7

4All exposures compared here result in 90% survival after 485 d.’General unified threshold model for survival (GUTS), stochastic death (SD) and individual
tolerance (IT), are the two limit cases [8].°Each scenario consists of a set of environmental boundary conditions (e.g., soil, weather) for pesticide fate simulations
that reflect realistic worst-case landscapes in Europe. The scenarios are part of the Forum for Co-ordination of Pesticide Fate Models and Their Use surface water
(FOCUS-SW) models [7], pesticide fate models used for environmental risk assessment of pesticides in Europe.

concentrations. Of course, normal background mortality would
still occur, but that was not included in the calculations in the
present study because the interest was purely in the extra
mortality caused by toxicant-induced mortality. Even if these
exposure concentration profiles are multiplied with a factor of
five, no fish are predicted to die. If the concentration profiles are
multiplied with a factor 10, then approximately three of the 48
simulated combinations of fish species (carp or fathead minnow),
FOCUS-SW scenario, and TKTD model (GUT-IT or GUTS-SD)
would result in a maximum of 4% mortality over 485 d. The most
critical scenario is D2 ditch, followed by D1 ditch. Mortality in
these three cases was small; more specifically, it was 4% or less
over 485 d with a safety factor of 10 applied. Assessing whether
these effects could have any impact on fish populations would
require an ecological perspective and would have to consider
density dependence, migration, predation, and other ecological
factors.

The safety margins, which allow for 10% mortality over 485
d, indicate that the concentrations in the original FOCUS-SW
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exposure profiles are a factor of 12 to 184 below levels for excess
mortality in the analyzed combinations of fish species and
application pattern. Considering that the simulations were
carried out with the two most sensitive fish species (carp and
fathead minnow) for benzovindiflupyr, the present study
indicates that it is unlikely that fish would die due the exposure
patterns as in the FOCUS-SW scenarios. The information gained
by calculating the margins of safety constituted an informative
additional line of evidence for environmental risk assessment.
Data such as that in Figure 4 can contribute to probabilistic risk
assessments.

In the present case study, we illustrate a higher-tier situation
where the risk assessment was refined by testing five fish species,
extensive TKTD modeling of six selected worst-case FOCUS-SW
profiles, and generation of additional information such as organism
recovery times, margins of safety, and comparison of the inherent
toxicity potential of different exposure time series. Taken together,
this information provides highly relevant further information for
robustly refining the risk assessment for benzovindiflupyr.
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Fig. 5. Comparison of the exposure pattern with the smallest inherent toxic potential (D2 ditch; A) with the exposure pattern that has the highest inherent toxic
potential (D4 stream; B). Both patterns were multiplied with their respective margins of safety (factor) so that they result in the same effect (10% mortality after 485
d for fathead minnow in GUTS-IT). Both patterns result from two applications. See Figure 2 caption for definition of GUTS-IT. [Color figure can be seen in the

online version of this article, available at wileyonlinelibrary.com]
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Table 4. Additional characteristics of each exposure profile

Mean interval

Mean duration

Number between peaks, of peaks,
Scenario® of peaks days days
D1 ditch 20 22 19
D1 stream 30 15 12
D2 ditch 73 6 6
D2 stream 109 4 3
D4 stream 17 22 8
D6 ditch 20 22 19

“Each scenario consists of a set of environmental boundary conditions (e.g.,
soil, weather) for pesticide fate simulations that reflect realistic worst-case
landscapes in Europe. The scenarios are part of the Forum for Co-ordination
of Pesticide Fate Models and Their Use surface water (FOCUS-SW) models
[7], pesticide fate models used for environmental risk assessment of
pesticides in Europe.

Model sensitivity and uncertainty

Model sensitivity depends on the parameter, model (GUTS-
SD or GUTS-IT), and exposure pattern (Figure 6). The fact that
model sensitivity depends on the exposure profile makes it
difficult to fully understand the uncertainty of our survival
predictions and generalize conclusions about model sensitivity.
The model is not very sensitive to changes in some parameters,
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such as alpha and beta for GUTS-IT and kk for GUTS-SD,
irrespective of which exposure pattern was used (D2 ditch or
D4 stream). The model outcome is sensitive, however, to
changes in ke (both models) and especially z in GUTS-SD. The
sensitivity is more pronounced for D2 ditch than for D4 stream.
This latter finding is related to the fact that D2 ditch contained
many short pulses throughout the entire 485-d period and also
a continuous raised background concentration. In contrast, D4
stream consisted of one main exposure event or exposure
period only (see also Table 4). Thus, D2 ditch allows for a
much stronger interplay and repeated effects of changes in ke
and z on the simulated survival. This is simply because there
are more peaks that can lead to exceeding the threshold z
and more intervals between peaks that could be too short or long
enough for organism recovery. The sensitivity analysis
improves our understanding of the relationship between
fluctuating exposure and toxic effect. However, the changes
simulated in the present study that resulted from changes in
one parameter at a time do not truly reflect the uncertainty in
model predictions inherent in the parameters. This is the case
because our one-at-a-time sensitivity analysis neglects the co-
variation of parameters and, therefore, overestimates the
uncertainty in model predictions. Thus, the confidence limits
of the model parameters quantify the outside boundary of their
uncertainty.
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Fig. 6. Survival after 485 d as a function of variation in single parameter values within their confidence limits. Sensitivity of the GUTS-IT model (A,C) and GUTS-SD
model (B,D). The sensitivity of the model output to variation in parameter values differs for different exposure patterns (D2 ditch: upper panels, D4 stream: lower panels).
See Figure 2 caption for definitions of GUTS-SD and GUTS-IT. [Color figure can be seen in the online version of this article, available at wileyonlinelibrary.com]
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We did not propagate the parameter uncertainty through to
the model predictions. More sophisticated modeling techniques,
such as parameter estimation with Monte Carlo Markov Chains,
followed by forward Monte Carlo simulations with sampling
from the chain, could be used to generate prediction intervals
around the simulated survival. Such simulations could capture
the covariation of parameters in the model calibration and
account for parameter covariation in the uncertainty analysis.

Model testing (validation) and testing needs

The results of the model validation using the ELS data
illustrate that GUTS-SD and GUTS-IT are able to predict the
mortality observed in fathead minnow fry. Exposing embryos in
the ELS is not modeled, and the model is calibrated to juvenile/
adult fish sensitivity. Thus it might be expected that the model
would predict less mortality than observed for the fry due to the
general expectations that early life stages are more sensitive than
juvenile and adult fish [26]. As this was not the case these
simulations strengthen the trust in predictions of the GUTS-SD
and GUTS-IT model. Furthermore, because the model provided
predictions of ELS survival, it appears that sensitivity of the two
fish life stages is similar.

In addition, it must be emphasized that the models were
calibrated first on acute toxicity studies and then tested by
predicting the outcome of the independent data derived from the
longer-term ELS study. Such a comparison (validation) is a
strong test for the predictive power of a model and is not
normally part of the risk assessment procedure. Overall, this
validation against independent data (i.e., toxicity data not used
for parameterization) provides evidence that the model is able
to reliably predict effects under different (longer) exposure
patterns.

In the present study, we use the GUTS models to predict
survival over 485 d. It is desirable, but challenging in practice, to
test the predictive capabilities of these models, or any alternative
models, over such a long time span. Any alternative method of
risk assessment of the FOCUS-SW exposure patterns makes an
extrapolation from short-term tests to 485 d. This extrapolation
step is rarely stated explicitly, although inevitable, and the
underlying assumptions remain unclear and cannot be scruti-
nized. The assumptions of the GUTS models, however, have
been clearly stated and discussed [8]. Because data to test
extrapolation models for fish survival over 485 d do not exist, for
neither constant nor fluctuating or pulsed exposure, we cannot
quantitatively evaluate the performance of any method,
including GUTS.

One recent study found that different sets of calibration data
result in different levels of agreement between survival data and
GUTS predictions [19]. That study also found that GUTS-SD
and GUTS-IT performed equally well and, more importantly,
that models calibrated on acute toxicity data tended to
overestimate mortality under longer pulsed exposure conditions.
This latter finding indicates that the method used in the present
study may err on the conservative side—that is, the safe side. A
forerunner model of GUTS has been calibrated and tested on
independent data [14,18]. The GUTS-type TKTD model
performed at least as well as the alternative models, and in a
study with mixtures in time, it even predicted the effect of the
sequence of exposure to two different compounds [18]. The
evidence available now indicates that GUTS predictions for
time-variable exposure are at least as reliable and, due to the
more realistic model structure, quite possibly more trustworthy
than alternative models.

R. Ashauer et al.

Organism recovery, exposure patterns, and inherent toxic
potential

The predicted exposure pattern in D2 ditch for multiple
exposure events is spread throughout the entire simulation period
(Fig. 5), whereas predicted exposure in D4 stream shows one
major event around day 350. Multiple exposure events, for
example in D2 ditch, allow the organisms to recover between
pulses; thus, such a pattern has the lowest inherent toxic
potential. This must not be confused with the fact that D2 ditch
was the exposure pattern that is closest to the onset of mortality,
as indicated by the lowest margins of safety (see Table 2). In the
FOCUS-SW simulations, D2 ditch reaches comparatively high
exposure concentrations. Thus, the high absolute exposure in D2
ditch overcompensates for its low inherent toxic potential.

A comparison of organism recovery times with the intervals
between peaks can yield additional insight into the potential
toxicity of the exposure profiles. The D4 stream scenario had the
lowest number of peaks (Table 4), but none of the characteristics
yielded a clear pattern identifying the exposure profile with the
lowest or highest inherent toxic potential. However, comparing
the mean interval between peaks (between 4 and 22 d) with the
organism recovery times (between 2 and 6 d) indicates that the
fish, on average, will be able to recover between peaks; that is,
the exposure events can be seen as toxicologically independent.
Note that D2 stream, which has the shortest mean interval
between peaks (4 d) also has the shortest average peak duration
(3 d), so that, on average, recovery is also plausible in the present
study, even though there are 109 peaks over the period of 485 d.
Comparing the D2 ditch and D4 stream also demonstrates that
for benzovindiflupyr, toxicity is not simply a function of the area
under the exposure curve, because the areas under the curves
differ widely for different patterns that result in the same overall
effect (see Table 3).

Use in higher tier risk assessment for registration of PPPs

The use of TKTD modeling, in particular predicting survival
using GUTS, supplements existing environmental risk assess-
ment methods well because carry-over effects and delayed
toxicity can be simulated. Furthermore, using the two extreme
cases, GUTS-SD and GUTS-IT, increases the confidence in the
risk assessments because these two generic models apply to all
mechanisms of toxicity. The question regarding which margin of
safety is acceptable and which percentage of mortality in
simulations with certain exposure factors would be acceptable
remains a risk management question. Any use of short-term
toxicity data to arrive at risk assessment decisions for the 485-d
FOCUS-SW exposure patterns requires assumptions and
underlying models, and these are rarely stated explicitly or
justified. Thus, the clear communication of underlying assump-
tions of GUTS [8] increases transparency and under-
standing of the risk assessment process. In addition, the
analysis presented in the present study makes use of the raw
data from the acute toxicity test; thus, it extracts more
information than summary statistics such as LC50 values and
facilitates extrapolations that are not possible with LC50 based
predictions alone.

The toxic potency of fluctuating or pulsed exposures cannot
be known a priori. Rather, the interplay of longer, low
concentrations and shorter, high concentrations resulted in a
non-linear relationship with toxicity, which is specific to each
combination of species and test substance. As the survival
prediction with GUTS can also identify which parts of the



Fish survival under dynamic chemical stress

exposure profile are potentially most toxic to organisms, such
analyses can also guide more targeted mitigation measures.

CONCLUSION

Taking time-variable exposure explicitly into account via
TKTD modeling improves our understanding of the relationship
between fluctuating exposure and toxicity. The GUTS is
currently the best tool when the endpoint is survival. The
additional information and insight gained through TKTD
modeling and careful analysis of the exposure patterns can
strengthen the environmental risk assessment of PPPs.

SUPPLEMENTAL DATA

Model calibration and parameter estimates for three
additional fish species as well as a comparison of survival
under fluctuating exposure for all five fish species.

Tables S1 to S7.

Figs. S1 to S6. (201 KB PDF).
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